Gut Reactions: Probiotics and Their Role in Gastrointestinal Care

CO-CHAIRS
Eamonn M. Quigley, MD, FRCP, FACP, MACG, FRCPI
David M. Underwood Chair of Medicine in Digestive Disorders
Co-Director, Lynda K. and David M. Underwood Center for Digestive Disorders
Chief, Gastroenterology and Hepatology
Professor of Medicine, Institute of Academic Medicine, Houston Methodist Hospital
Professor of Medicine, Weill Cornell Medical College Adjunct Professor of Medicine, Texas A and M Health Sciences Center College of Medicine
Houston, Texas

Brennan Spiegel, MD, MSHS
Director of Health Services Research
Cedars-Sinai Health System
Director, Cedars-Sinai Center for Outcomes Research and Education
Co-Editor in Chief, American Journal of Gastroenterology
Cedars-Sinai Professor of Medicine and Public Health in Residence
Los Angeles, California

GOAL
The goal of this CME initiative is to educate members of the intended audiences about the appropriate use of probiotic therapies in a variety of gastrointestinal (GI) disorders.

LEARNING OBJECTIVES
At the completion of this activity, participants should be better able to:

1. Describe the role of microbiota in GI health
2. Review clinical data for the use of probiotic therapies in irritable bowel syndrome, ulcerative colitis, Helicobacter pylori infection, and Clostridium difficile infection
3. Understand the effects of probiotics on other aspects of patient health and quality of life
4. Discuss strategies for appropriate patient education and guidance in the use of probiotics

INTENDED AUDIENCE
The activity is designed for primary care physicians, gastroenterologists, nurses, nurse practitioners, physician assistants, retail pharmacists, and other clinicians interested in probiotics and their role in GI care. Credit will be awarded for physicians and pharmacists.

ESTIMATED TIME FOR COMPLETION: 1 hour

COURSE FORMAT: Monograph

ACCREDITATION STATEMENT
This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of AKH Inc., Advancing Knowledge in Healthcare, and Applied Clinical Education. AKH Inc., Advancing Knowledge in Healthcare, is accredited by the ACCME to provide continuing medical education for physicians.

CREDIT DESIGNATION
Physicians
AKH Inc., Advancing Knowledge in Healthcare designates this enduring activity for a maximum of 1.0 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Physician Assistants
The National Commission on Certification of Physician Assistants accepts AMA PRA Category 1 Credit™ from organizations accredited by the ACCME.

DISCLOSURE OF CONFLICTS OF INTEREST AND INVESTIGATIONAL PRODUCTS
It is the policy of AKH Inc. to ensure independence, balance, objectivity, scientific rigor, and integrity in all of its continuing education activities. The author must disclose to the participants any significant relationships with commercial interests whose products or services may be mentioned in the activity or with the commercial supporter of this continuing education activity. Identified conflicts of interest are resolved by AKH prior to accreditation of the activity and may include any of or a combination of the following: attestation to non-commercial content; notification of independent and certified CME/CE expectations; referral to National Author Initiative training; restriction of topic area or content; restriction to discussion of science only; amendment of content to eliminate discussion of device or technique; use of other author for discussion of recommendations; independent review against criteria ensuring evidence to support recommendations; moderator review; and peer review.

The faculty reported the following financial relationships or relationships to products or devices they or their spouse/life partner have with commercial interests related to the content of this activity:

• Eamonn Quigley, MD: Kenned Health (stock, consultant), Croaker & Game (speakers’ bureau)
• Brennan Spiegel, MD, MSHS: Allergan, Commonwealth, GI Health Foundation, Ironwood (consultant); GI Logic, My Total Health (royalties)
• Jennifer Kulpa: Nothing to disclose
• Oren Truba: Nothing to disclose
• AKH Inc. planners and reviewers: Nothing to disclose

DISCLOSURE OF UNLABELED USE
This educational activity may contain discussion of published and/or investigational uses of agents that are not indicated by the FDA. AKH Inc. and Applied Clinical Education do not recommend the use of any agent outside of the labeled indications. The opinions expressed in the educational activity are those of the faculty and do not necessarily represent the views of any organization associated with this activity. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications, and warnings.

DISCLAIMER
This course is designed solely to provide the health care professional with information to assist in his/her practice and professional development and is not to be considered a diagnostic tool to replace professional advice or treatment. The course serves as a general rule to guide the health care professional, and therefore, cannot be considered as giving legal, nursing, medical, or other professional advice in specific cases. AKH Inc. specifically disclaims any responsibility for any adverse consequences resulting directly or indirectly from information in the course, for undetected error, or through the participant’s misunderstanding of the content.

ACCREDITOR CONTACT INFORMATION
For information about the accreditation of this program, please contact AKH Inc. at service@akhcme.com.

SYSTEM REQUIREMENTS
PC
• Microsoft Windows 2000 SE or greater
• Flash Player Plugin (v7.0.1.9 or greater)
• Internet Explorer (v5.5 or greater) or Firefox Acrobat Reader
MAC
• MAC OS 10.2.8 Flash Player Plugin (v7.0.1.9 or greater)
• Safari Adobe Acrobat Reader
• Internet Explorer is not supported on the Macintosh

Safari Adobe Acrobat Reader
• Websites
• Microsoft Windows 2000 SE or greater
• Flash Player Plugin (v7.0.1.9 or greater)
• Internet Explorer (v5.5 or greater) or Firefox Acrobat Reader
Introduction

The intestinal microenvironment, including its endogenous intestinal bacterial flora (microbiota), has a marked effect on gastrointestinal (GI) health and disease. A growing number of studies find that orally ingested preparations of exogenous bacteria (“probiotics”) are useful for the treatment or prevention of various gastroenterological conditions and symptoms. This monograph describes best practices for the safe and effective use of probiotics in maintaining and improving patient health, focusing on orally ingested preparations of exogenous bacteria (“probiotics”). Special topics, including strain selection and the need for patient education, also will be addressed.

Epidemiology and Burden of Chronic GI Disorders

The burden of GI disease is extensive, affecting 60 to 70 million Americans annually. An estimated 4.6 million hospitalizations, 72 million ambulatory care visits, and 236,000 deaths are attributable to GI disease. US spending on these diseases has been estimated at $142 billion per year.

The leading symptoms and diagnoses for GI disorders in US outpatient clinic visits are summarized in Tables 1A and 1B. Although not included in the table, a substantial increase in the incidence of CDI has been noted during the past decade. Indeed, CDI hospitalizations have increased by 237% since 2000 and now account for a proportion of inpatient mortality similar to that of GI hemorrhage. Because many GI diseases are chronic with recurrent flares, and because symptoms can be debilitating and interfere with activities of daily living, these conditions have a significant effect on health-related quality of life (HRQoL) compared with many other chronic illnesses. An extensive analysis of large databases by Peery et al found worse HRQoL and significantly greater impairments in work, school attendance, social activities, and general activity for patients with GI disease and symptoms than other patient populations.

Overview of Probiotics and Strain Specificity

The human GI system is a diverse and dynamic ecosystem comprising more than 10^13 microorganisms and an estimated 1,000 species. Major functions of the gut microflora include metabolic activities that help process nutrients and energy, promote intestinal epithelial integrity and immune function, and protect the colonized host against invasion by pathogenic microbes. Alterations in the intestinal microenvironment can occur for a variety of reasons, including antibiotic use, and can disrupt normal intestinal function, leading to overgrowth of pathogenic microorganisms, GI infection, and subsequent symptoms.

Several studies suggest that GI disorders and symptoms are associated with alteration in the function or composition of endogenous intestinal flora. Indeed, a relative decrease in the population of Bifidobacteria is one of the most consistent findings in these studies. Qualitative changes can lead to the proliferation of species that produce more gas and short-chain fatty acids, resulting in the deconjugation of bile acids, with subsequent changes in water and electrolyte transport in the colon and altered colonic motility and/or sensitivity.

These insights have led to the recognition that oral administration of some types of exogenous bacteria can promote intestinal homeostasis and prevent or treat disorders and symptoms. These beneficial bacterial preparations are known as probiotics and are defined by the Food and Agriculture Organization and the World Health Organization as “live microorganisms, which when present in adequate amounts, confer health benefits on the host.”

The mechanisms of action of probiotics are not understood fully and vary by species and strain but likely involve regulation of intestinal microbial homeostasis, interference with the ability of pathogens to colonize and infect the mucosa, modulation of local and systemic immune responses, and stabilization or maintenance of GI barrier function. Probiotics also produce short-chain fatty acids, an action that decreases luminal pH and increases production of bactericidal proteins. Finally, the DNA of probiotic organisms has been shown to inhibit apoptosis of epithelial cells and improve bowel dysmotility.

Table 1A and 1B. Leading GI Symptoms and Diagnoses in Outpatient Clinic Visits (United States, 2009)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Symptom Prompting Outpatient Visit</th>
<th>Estimated Visits, million</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abdominal pain</td>
<td>15.87</td>
</tr>
<tr>
<td>2</td>
<td>Diarrhea</td>
<td>4.24</td>
</tr>
<tr>
<td>3</td>
<td>Constipation</td>
<td>3.18</td>
</tr>
<tr>
<td>4</td>
<td>Vomiting</td>
<td>2.86</td>
</tr>
<tr>
<td>5</td>
<td>Nausea</td>
<td>2.81</td>
</tr>
<tr>
<td>6</td>
<td>Heartburn/indigestion</td>
<td>1.98</td>
</tr>
<tr>
<td>7</td>
<td>Rectal bleeding</td>
<td>1.70</td>
</tr>
<tr>
<td>8</td>
<td>Other/unspecified</td>
<td>1.36</td>
</tr>
<tr>
<td>9</td>
<td>Dysphagia</td>
<td>1.15</td>
</tr>
<tr>
<td>10</td>
<td>GI bleeding</td>
<td>1.07</td>
</tr>
<tr>
<td>11</td>
<td>Decreased appetite</td>
<td>0.73</td>
</tr>
<tr>
<td>12</td>
<td>Bloating/distention</td>
<td>0.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Physician Diagnosis</th>
<th>Estimated Visits, million</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gastroesophageal reflux disease</td>
<td>8.86</td>
</tr>
<tr>
<td>2</td>
<td>Abdominal pain</td>
<td>7.17</td>
</tr>
<tr>
<td>3</td>
<td>Gastroenteritis/dyspepsia</td>
<td>4.01</td>
</tr>
<tr>
<td>4</td>
<td>Constipation</td>
<td>3.98</td>
</tr>
<tr>
<td>5</td>
<td>Abdominal wall hernia</td>
<td>3.56</td>
</tr>
<tr>
<td>6</td>
<td>Diverticular disease</td>
<td>2.68</td>
</tr>
<tr>
<td>7</td>
<td>Diarrhea</td>
<td>2.40</td>
</tr>
<tr>
<td>8</td>
<td>Inflammatory bowel disease (including ulcerative colitis)</td>
<td>1.89</td>
</tr>
<tr>
<td>9</td>
<td>Colorectal neoplasm</td>
<td>1.74</td>
</tr>
<tr>
<td>10</td>
<td>Nausea/vomiting</td>
<td>1.68</td>
</tr>
<tr>
<td>11</td>
<td>Rectal bleeding</td>
<td>1.67</td>
</tr>
<tr>
<td>12</td>
<td>Irritable colon</td>
<td>1.55</td>
</tr>
</tbody>
</table>

GI, gastrointestinal

The most commonly used probiotics are the gram-positive rods and obliga-
tive facultative anaerobes Lactobacillus (including L. acidophilus, L. rhamnosus,
L. bulgaricus, L. reuteri, and L. casei) and Bifidobacterium (including B. anima-
lis, B. infantis, B. lactis, and B. longum) and the yeast Saccharomyces boulardii.18
These organisms produce lactic acid through anaerobic digestion of saccha-
rides. Most can tolerate fluctuations in temperature and low-pH environments,
properties that afford them the ability to withstand the acidic milieu of the
stomach and transiently colonize the GI tract.19,20

Because probiotics are considered health foods and therefore not regu-
lated by the FDA as drugs, most are available over-the-counter as dietary sup-
plements or fermented products (Table 2).18 The wide array of formulations
complicate physician-guided therapy. For example, yogurt is a common
source of probiotics for patients who self-prescribe such therapy; however,
not all live cultures contained in yogurt survive well in an acidic environment,
nor do they all colonize the GI tract efficiently.21,22 In addition, pasteurization
of yogurt, which is common in the United States, can kill the beneficial bac-
teria in yogurt, and the lactose contained in yogurt can actually increase GI
symptoms in some patients.

Importantly, the therapeutic effects of a particular probiotic species or strain
cannot be generalized to others.18 Current US regulations do not mandate that
probiotic labeling indicates strain designations, and quality-assurance test-
ing (viable cell counts, shelf-life, appropriate storage conditions, etc) is left to
the discretion of individual manufacturers; this can result in marked variations
in efficacy.18 Interpretation of the scientific literature also is complicated by the
use of many different strains in studies. In the sections that follow, efforts have
been made to describe data with as much specificity as possible.

Probiotic Use in GI Disorders and Symptoms

In an effort to support the selection of appropriate probiotic therapy, the
World Gastroenterology Organization has summarized high-quality clinical
trials of specific probiotic strains in various chronic GI conditions (Table 3).23

Irritable Bowel Syndrome

Among more recent advances in the characterization of the pathophysiol-
ogy of IBS are the concept of “brain–gut interaction” and the role of endoge-
nous gut flora. Indeed, the central nervous system and gut enjoy bidirectional
communication via neural pathways and immunologic and endocrinologi-
cal mechanisms that can contribute to the development of IBS.26,27 Further-
more, IBS may result from a dysfunctional interaction between the endogenous
flora and the intestinal mucosa that leads to immune activation in the colonic
mucosa.28 Some investigators propose a role for bacterial overgrowth as a
causative factor in the pathogenesis of symptoms in IBS, whereas others sug-
gest that qualitative changes in the colonic flora may be more relevant.29,30

These observations led to the investigation of the therapeutic utility of pro-
biotics in patients with IBS. A randomized controlled trial (RCT) by Whorwell
et al evaluated different doses of Bifidobacterium infantis 35624 in 362 women
diagnosed with IBS.31 Participants were randomized to B. infantis 35624 or pla-
cebo and followed for 4 weeks. In the treatment group, a significant decrease in
abdominal pain/discomfort (the primary end point) was observed at 4 weeks,
along with improvement in the secondary end points of bloating/distension,
sensation of incomplete evacuation, passage of gas, straining, bowel habit sat-
sfaction, and a reduction in composite symptom score.

A more recent RCT (N=49) demonstrated greater relief of IBS-related
abdominal pain/discomfort with multispecies probiotics (mixture of B. longum,
B. bifidum, B. lactis, L. acidophilus, L. rhamnosus, and Streptococcus thermophi-
lus) for 4 weeks compared with placebo (68.0% vs 57.5%; P=0.05).32 Fecal
analysis revealed that B. lactis, L. rhamnosus, and S. thermophilus increased
significantly in the probiotics group, whereas only B. lactis increased in the
placebo group. Numerous other RCTs have examined the effects of various
probiotic formulations on IBS symptoms, with several summarized here (all
data for probiotic versus control):

- **L. plantarum** 299V in liquid suspension was associated with greater resolu-
tion of abdominal pain (100% vs 55%; P=0.0012) and reduction in overall
IBS symptoms (95% vs 15%; P=<0.0001; N=40).33
- A drink containing 5×10⁷ colony-forming units (CFU)/mL of **L. plantarum**
DSM 9843 led to significant reduction in flatulence (N=60).34 The same
strain, provided as a capsule, led to reduced pain severity (0.68+0.53
on VAS vs 0.92+0.57; P=0.05) and daily bowel frequency (1.01+0.77 vs
1.71+0.95; P=0.05), with similar results for bloating (N=214).35
- VSL# 3, a mixture of 4 strains of **Lactobacillus** (L. casei, L. plantarum,
- **B. lactis** increased in the,
- **B. infantis** increased in the,
- **Streptococcus thermophilus** increased in the,
- and **Lactobacillus** increased in the.
- **Saccharomyces boulardii** increased in the,
L. acidophilus and L. delbrueckii subsp. bulgaricus, 3 strains of Bifidobacterium (B. longum, B. breve and B. infantis), and 1 strain of Streptococcus (S. salivarius subsp. thermophilus), was associated with lower flatulence scores (29.7±2.6 vs 39.5±2.6; P=0.01; N=48) and lower bloating scores (~13.7; P=0.046 vs ~17; P=0.54; N=25).37

- Fermented milk containing B. animalis DN-173 010 led to greater response on HRQoL discomfort (65.2% vs 47.7%; P=0.005) and bloating scores (0.56±1.01 vs 0.31±0.87; P=0.03) and with increased stool frequency in patients with fewer than 3 stools per week at baseline (P<0.001; N=267).38
- A preparation containing L. acidophilus CUL-60 (NCIMB 30157), L. acidophilus CUL-21 (NCIMB 30156), B. bifidum CUL-20 (NCIMB 30153), and B. lactis CUL-34 (NCIMB 30172) was associated with significantly greater improvement in symptom severity (P=0.0217), QoL (P=0.0068), days with pain (P=0.0448), and bowel habit satisfaction (P=0.0422; N=52).39

- Saccharomyces cerevisiae (n=86) led to a significantly greater response, defined as reduction in abdominal pain/discomfort (63% vs 47%; odds ratio [OR], 1.88; 95% confidence interval [CI], 0.99-3.57; P=0.04) without stool modification (N=179).40

Finally, the American College of Gastroenterology Task Force on the Management of Functional Bowel Disorders published a meta-analysis and systematic review of therapies for IBS and chronic idiopathic constipation.41

Aggregated data for 3,452 patients in 35 RCTs indicated a benefit for probiotics, with mechanisms including inhibition of H. pylori attachment to mucosal cells, regulation of immune response to H. pylori, and direct physiologic effects, probiotics may be useful adjuncts in the treatment of H. pylori-related gastri sis.44 For example, in an open-label trial, 234 H. pylori-positive patients with gastri sis were randomized to 1 week of standard triple therapy (omeprazole, clarithromycin, and amoxicillin); 2 weeks of pretreatment with 3×10^7 CFU of L. acidophilus per day plus 1 week of triple therapy; or 1 week of triple therapy then 2 weeks of the same probiotics.45 H. pylori eradication rates were significantly greater in both probiotic groups (81.6% and 82.4%) than in the group that did not receive probiotics (61.5%).45

In a review of 19 RCTs examining adjunctive use of probiotics in H. pylori eradication (N=2,730).45 McFarland et al found that 4 of the 6 probiotic mixtures studied were significantly effective (Figure 2).44 In addition, 5 mixtures significantly reduced the incidence of AEs associated with standard therapies: L. Helveticus/L. rhamnosus (relative risk [RR], 0.12), the 8-strain combination L. acidophilus/L. casei rhamnosus/L. plantarum/L. reuteri/L. salivarius/L. sporogenes/B. infantis/B. longum (RR, 0.24), L. acidophilus/B. longum/E. faecalis (RR, 0.25), L. acidophilus/B. animalis (RR, 0.31), and L. acidophilus/B. bifidum (RR, 0.67).44

Other studies support the use of L. reuteri ATCC 55730,46 L. rhamnosus GG,47 and S. boulardii lyo48 in reducing the symptoms of H. pylori; and for S. boulardii lyo in enhancing eradication of H. pylori.49

Ulcerative Colitis

UC is a chronic relapsing inflammatory disorder of the GI tract. Clinical features include hemorrhagic diarrhea, abdominal pain, weight loss, and/or fatigue. Some patients develop extra-intestinal manifestations, such as primary sclerosing cholangitis, skin lesions, or joint problems.50

Current strategies for the treatment of UC involve the induction and maintenance of remission, usually via immunosuppressant and immunomodulatory strategies.50 Although existing therapies can be highly effective, they sometimes fall short in achieving remission, and some patients nonetheless require surgical intervention.50 This emphasizes the need for alternative therapeutic options to supplement existing modalities.

A role for the intestinal flora in UC is supported by the finding that intestinal inflammation often occurs in anatomical areas with high bacterial numbers.50 Furthermore, many of the genetic loci for UC are associated with the innate immunity responsible for the primary defense against enteric bacteria, further underscoring the interaction between the gut flora and mucosal inflammation.50

Based on these observations, many studies have investigated the therapeutic efficacy of probiotics in UC. In patients with active disease, VSL#3 and E. coli Nissle 1917 have shown the most benefit among probiotic strains.51-57 For example, a 3-arm RCT including 90 patients with moderately active UC compared VSL#3 plus balsalazide with balsalazide alone for 8 weeks and found significantly more patients entering clinical remission, as well as faster induction of remission in the probiotic combination group.58 Two other large RCTs saw significantly more patients with mild to moderately active UC...
reach at least 50% reduction in clinical activity after VSL#3 versus placebo for 12 (n=147)\(^59\) and 8 weeks (n=144).\(^60\) Remission rates increased significantly\(^69\) and insignificantly\(^60\) in these trials. A meta-analysis of all 3 studies showed that VSL#3 use was associated with an RR of 1.69 (95% CI, 1.17-2.43), indicating a significant benefit versus controls.\(^61\)

Another meta-analysis found that VSL#3 3.6×10\(^12\) CFU per day plus conventional therapy was more effective than conventional therapy alone in achieving at least 50% reduction in clinical activity (44.6% vs 25.1%; \(P=0.008\); OR, 2.793; 95% CI, 1.375-5.676), response (53.4% vs 29.3%; \(P<0.0001\); OR, 3.03; 95% CI, 1.89-4.83) and remission (45.8% vs 24.8%; \(P=0.007\); OR, 2.4; 95% CI, 1.48-3.88) in patients with mild to moderately active UC (N=441).\(^62\)

Finally, a 12-month trial in 337 patients established \(E. coli\) Nissle 1917 200 mg once daily to be equally effective as established therapy with mesalazine 500 mg 3 times daily.\(^57\) Relapse rates were 36.4% in the probiotic group and 33.9% in the mesalazine group (significant equivalence \(P=0.003\)), underscoring the pathogenic significance of the enteric flora in UC.

C. difficile Infection and Antibiotic-Associated Diarrhea

\(C. difficile\) is an anaerobic, gram-positive, sporulating, toxin-producing bacillus that causes a spectrum of clinical conditions ranging from an asymptomatic carrier state to fulminant disease.\(^63\) Disruption of the structure and/or function of an individual’s normal intestinal flora (eg, after exposure to antibiotics) enables colonization by \(C. difficile\), and in the absence of an effective immune response, the bacteria may lead to a spectrum of colonic pathologies ranging from diarrhea to toxic megacolon and death.\(^63\) Despite purported clinical resolution of CDI in response to metronidazole or vancomycin, a significant proportion of patients experience recurrence.\(^63\)

\(Lactobacillus\)-containing probiotic mixtures and \(S. boulardii\) may be effective in the prevention of CDI in high-risk antibiotic recipients\(^64,65\) as well as the prevention of recurrent CDI.\(^66\) In a double-blind RCT, the addition of \(S. boulardii\) 1 g per day to a standard antibiotic (vancomycin hydrochloride or metronidazole) in patients with active CDI-associated diarrhea (CDAD) or a history of CDAD led to a significantly lower rate of recurrence versus placebo in recurrent CDAD (34.6% vs 64.7%; \(P=0.04\)).

Critically ill patients often are treated with antibiotics and are at high risk for developing CDAD. In a study of 22 such patients, fecal sample analysis showed that \(C. difficile\) colonization was prevented with enteral administration of \(L. plantarum\) 299v via a fermented oatmeal.\(^67\)

A Cochrane meta-analysis examining whether concurrent use of probiotics and antibiotics prevented CDI (23 RCTs, N=4,213) found the incidence of CDI to be 2.0% in the probiotic cohort and 5.5% in the control cohort (RR, 0.36; 95% CI, 0.26-0.51), with a number needed to treat for benefit of 29 (95% CI, 22-43).\(^68\)

Diarrhea also can occur in a significant proportion of patients receiving antibiotics in the absence of CDI. This condition is known as antibiotic-associated diarrhea (AAD).\(^69\) A review of the literature supports the efficacy of \(S. boulardii\) in the prevention of AAD.\(^65\)

The risks associated with CDAD and AAD may be greater in older patients. In an RCT including 135 hospitalized patients (mean age 74 years) who were taking antibiotics, consumption of a probiotic drink containing \(L. casei, L. bulgaricus,\) and \(S. thermophilus\) twice daily or placebo was associated with reduced

Table 2. Probiotic Products and Their Compositions\(^18\)

<table>
<thead>
<tr>
<th>Product</th>
<th>Composition</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activia yogurt</td>
<td>Bifidobacterium lactis</td>
<td>100 million bacteria/g</td>
</tr>
<tr>
<td>Align</td>
<td>(B. infantis) 35624</td>
<td>4 mg per capsule (1 billion CFU)</td>
</tr>
<tr>
<td>Culturelle</td>
<td>Lactobacillus rhamnosus</td>
<td>10 billion bacteria + insulin 200 mg per capsule</td>
</tr>
<tr>
<td>Culturelle Kids</td>
<td>(L. rhamnosus)</td>
<td>1.5 billion bacteria per packet</td>
</tr>
<tr>
<td>Florajen</td>
<td>(L. acidophilus)</td>
<td>20 billion bacteria per capsule</td>
</tr>
<tr>
<td>Florastor</td>
<td>Saccharomyces boulardii iyo</td>
<td>250 mg per capsule</td>
</tr>
<tr>
<td>Howaru</td>
<td>(L. acidophilus, B. lactis)</td>
<td>10 billion bacteria per capsule</td>
</tr>
<tr>
<td>Kefir</td>
<td>(L. lactis, L. rhamnosus, L. plantarum, L. casei, L. acidophilus, L. reuteri, Leuconostoc cremoris, Streptococcus diacetylactis, Saccharomyces florentinus, B. longum, B. breve, B. lactis)</td>
<td>7-10 billion CFU per cup</td>
</tr>
<tr>
<td>Lactinex</td>
<td>(L. acidophilus, L. bulgaricus)</td>
<td>(10^6) CFU per tablet, (10^9) CFU per packet</td>
</tr>
<tr>
<td>RepHresh Pro-B</td>
<td>(L. rhamnosus, L. reuteri)</td>
<td>5 billion CFU per capsule (vaginal use)</td>
</tr>
<tr>
<td>VSL#3</td>
<td>(L. acidophilus, L. plantarum, L. paracasei, L. bulgaricus, B. breve, B. infantis, B. longum, Streptococcus thermophilus)</td>
<td>225 billion bacteria per 2 capsules</td>
</tr>
<tr>
<td>Yakult</td>
<td>(L. casei)</td>
<td>8 billion bacteria per 80-mL bottle</td>
</tr>
</tbody>
</table>

CFU, colony-forming unit

Republished with permission of Lippincott Williams & Wilkins, from Clinical uses of probiotics, Islam SU, volume 95(5), 2016 permission conveyed through Copyright Clearance Center, Inc.
<table>
<thead>
<tr>
<th>Disorder/Action</th>
<th>Strain</th>
<th>Recommended Dose</th>
<th>Evidence Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of acute diarrhea</td>
<td>Enterococcus faecium LAB SF68</td>
<td>10⁸ CFU tid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactobacillus paracasei B 21060 or L. rhamnosus GG</td>
<td>10⁹ CFU bid</td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saccharomyces boulardii, strain of S. cerevisiae</td>
<td>10⁹ CFU per 250-mg capsule; 2-6 capsules/d</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>Prevention of antibiotic-associated</td>
<td>E. faecium LAB SF68</td>
<td>10⁴ CFU bid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>diarrhea</td>
<td>S. boulardii, strain of S. cerevisiae</td>
<td>1 g or 4×10⁹ CFU/d</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. rhamnosus GG</td>
<td>10⁷⁰-10¹⁰ CFU bid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. casei DN-114 001 in fermented milk</td>
<td>10¹⁰ CFU bid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacillus clausii (Enterogermina strains)</td>
<td>2×10⁹ spores tid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. acidophilus CL1285 + L. casei LBC80R</td>
<td>5×10¹⁰ CFU qd/bid</td>
<td>1b</td>
<td>Strains administered in capsules or fermented milk vehicle</td>
</tr>
<tr>
<td>Prevention of Clostridium difficile</td>
<td>L. casei DN-114 001 in fermented milk</td>
<td>10¹⁰ CFU bid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>diarrhea</td>
<td>L. acidophilus + Bifidobacterium bifidum (Cultech strains)</td>
<td>2×10¹⁰ CFU each strain qd</td>
<td>1b</td>
<td>Strain designations not provided</td>
</tr>
<tr>
<td></td>
<td>Oligofructose</td>
<td>4 g tid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. rhamnosus HN001 + L. acidophilus NCFM</td>
<td>10⁸ CFU each qd</td>
<td>2b</td>
<td>Probiotic administration reduced fecal counts of C. difficile in elderly patients without diarrhea</td>
</tr>
<tr>
<td></td>
<td>L. acidophilus CL1285 + L. casei LBC80R</td>
<td>5×10¹⁰ CFU qd/bid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. boulardii, strain of S. cerevisiae</td>
<td>2-3×10⁹ for 28 d; patients followed for another 4 wk</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>Coadjuvant therapy for Helicobacter</td>
<td>L. rhamnosus GG</td>
<td>6×10⁹ CFU bid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>pylori eradication</td>
<td>Bacillus clausii (Enterogermina strains)</td>
<td>2×10⁹ spores tid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. boulardii, strain of S. cerevisiae</td>
<td>500 mg-1 g or 2-4×10³ CFU/d</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kefir</td>
<td>250 mL bid</td>
<td>2b</td>
<td>Improved eradication rates (78% vs 50%)</td>
</tr>
<tr>
<td></td>
<td>L. reuteri ATCC 55730</td>
<td>10⁸ CFU/d</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>Reduction of symptoms associated with</td>
<td>Yogurt with live cultures of L. delbrueckii ssp. Bulgarius + Streptococcus thermophilus</td>
<td>≥10¹⁰ CFU of each strain/g</td>
<td>1a</td>
<td>Systematic review of RCTs</td>
</tr>
<tr>
<td>lactose maldigestion</td>
<td>B. infantis 35624</td>
<td>10⁸ CFU qd</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>Alleviation of some symptoms of IBS</td>
<td>B. animalis DN-173 010 in fermented milk</td>
<td>10¹⁰ CFU bid</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. acidophilus SDC 2012, 2013</td>
<td>10¹⁰ CFU/d</td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. rhamnosus GG, Lactobacillus rhamnosus LC705, B. breve BB99 + Propionibacterium freudenreichii ssp. shermanii</td>
<td>10¹⁰ CFU qd</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. longum 101 (29%), L. acidophilus 102 (29%), Lactococcus lactis 103 (29%), + Streptococcus thermophilus 104 (13%)</td>
<td>10¹⁰ CFU qd</td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short-chain fructooligosaccharides</td>
<td>5 g/d</td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galactooligosaccharides</td>
<td>3.5 g/d</td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td>Maintenance of remission in UC</td>
<td>Bacillus coagulans GBI-30, 6086</td>
<td>2×10⁹ CFU qd</td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escherichia coli Nissle 1917</td>
<td>5×10¹⁰ viable bac bid</td>
<td>1b</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Evidence-Based Indications for Probiotics in Gastroenterology (Adults)²³
incidence of both AAD (12% vs 34%; P<0.007; OR, 0.25; 95% CI, 0.07-0.85; absolute risk reduction 21.6%) and CDAD (0% vs 17%; P=0.001; absolute risk reduction, 17%).

In a double-blind RCT (N=255) 2 doses of combination Lactobacillus acidophilus CL1285-Lactobacillus casei LBC80R were effective for the prophylaxis of AAD and CDAD in hospitalized adults. A dose-ranging effect was seen, with 100 billion CFU per day yielding superior outcomes and fewer GI events than 50 billion CFU or placebo (respectively, AAD incidence 15.5%, 28.2%, and 44.1%; symptom duration 2.8, 4.1, and 6.4 days; CDAD incidence 1.2%, 9.4%, 23.8%).

Patient Education and Safety

The studies described here suggest the potential to decrease morbidity, health care costs, and mortality with appropriate administration of specific probiotic strains; however, large, well-designed, RCTs, dose-ranging trials, comparative trials, and cost–benefit analyses are necessary. As with any therapy, patient education about issues around efficacy studies is necessary. Patient resources from reputable organizations are available to help guide this process:

- American Gastroenterological Association: www.gastro.org/patient-center/diet-medications/probiotics

References

5. In a study by Whorwell et al, _____ was associated with a significant decrease in abdominal pain/discomfort (primary end point) and decreases in bloating/distension, sensation of incomplete evacuation, passage of gas, straining, and bowel habit satisfaction (secondary end points)
 a. *B. infantis* 35624
 b. butyric acid and fiber supplementation
 c. *Escherichia coli Nissle* 1917
 d. *L. rhamnosus*

CME Post-Test

1. After participating in this activity, how confident are you in your ability to describe the role of microbiota in gastrointestinal (GI) health?
 a. Very confident
 b. Moderately confident
 c. Only a little confident
 d. Not at all confident

2. After participating in this activity, how often do you plan to discuss strategies for appropriate use of probiotic therapy with patients who present with GI disorders?
 a. Always or most of the time
 b. Sometimes
 c. Rarely
 d. Never

3. A relative decrease in the population of _____ is among the most consistent findings in studies of alterations in the function and composition of endogenous intestinal flora among patients with GI disorders.
 a. *Lactobacillus*
 b. *Bifidobacteria*
 c. *Helicobacter pylori*
 d. *Saccharomyces*

4. The therapeutic mechanisms of probiotics include all of the following except _____.
 a. interference with the ability of pathogens to colonize and infect the mucosa
 b. modulation of local and systemic immune responses
 c. increasing luminal pH and decreasing production of bactericidal proteins
 d. inhibition of epithelial cell apoptosis

5. In a study by Whorwell et al, _____ was associated with a significant decrease in abdominal pain/discomfort (primary end point) and decreases in bloating/distension, sensation of incomplete evacuation, passage of gas, straining, and bowel habit satisfaction (secondary end points)
 a. *B. infantis* 35624
 b. butyric acid and fiber supplementation
 c. *Escherichia coli Nissle* 1917
 d. *L. rhamnosus*

6. In a meta-analysis and systematic review on probiotics, the American College of Gastroenterology Task Force on irritable bowel syndrome found that probiotics were beneficial in reducing _____.
 a. flatulence
 b. abdominal pain
 c. bloating
 d. all of the above

7. In a recent review of 19 randomized controlled trials examining adjunctive use of 6 different probiotic mixtures in *H. pylori* eradication therapy, McFarland et al recently found that _____ most significantly improved eradication rates, reaching 96%.
 a. *Helveticus/L. rhamnosus*
 b. *L. acidophilus/B. animalis*
 c. *B. bifidum*
 d. *L. plantarum/L. reuteri*

8. Which of the following statements about ulcerative colitis is true?
 a. It induces chronic gastritis with potentially severe consequences including peptic ulcers, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma.
 b. Intestinal inflammation often occurs in anatomical areas with low bacterial numbers.
 c. Studies have demonstrated a role for probiotics in maintaining but not inducing remission.
 d. In patients with active disease, VSL #3 and *E. coli Nissle* 1917 have shown the most benefit among probiotic strains.

9. Colonization by *Clostridium difficile* infection can arise from _____.
 a. treatment with probiotics that normally are not present in the gut
 b. disruption of normal intestinal flora by antibiotics
 c. *Lactobacillus*-containing probiotic mixtures
 d. toxic megacolon

10. Which of the following is true of yogurt-based probiotics?
 a. They are regulated by the FDA as drugs.
 b. Pasteurization encourages increased bacteria growth.
 c. Not all of the live cultures contained in yogurt survive well in an acidic environment.
 d. Current US regulations mandate that labeling indicates strain designations.